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Abstract—A three-dimensional formulation is presented to solve inverse heat conduction as a general
optimization problem by applying the adjoint equation approach coupled to the conjugate gradient
algorithm. The formulation consists of the sensitivity problem, the adjoint problem and the gradient
equations. A solution algorithm is presented for the estimation of the surface condition (i.e. heat flux or
temperature), space dependent thermal conductivity and heat capacity from the knowledge of transient
temperature recordings taken within the solid. In this approach, no a priori information is needed about
the unknown function to be determined. It is shown that the problems involving a priori information about
the unknown function become special cases of this general approach.

1. INTRODUCTION

THE USE of inverse analysis for the estimation of sur-
face conditions such as temperature and heat flux,
or the determination of thermal properties such as
thermal conductivity and heat capacity of solids by
utilizing the transient temperature measurements
taken within the medium, has numerous practical
applications. For example, the direct measurement of
heat flux at the surface of a wall subjected to fire, at
the outer surface of a re-entry vehicle or at the inside
surface of a combustion chamber is extremely difficult.
In such situations, the inverse method of analysis,
using transient temperature measurements taken
within the medium can be applied for the estimation
of such quantities. However, difficulties associated
with the implementation of inverse analysis should
also be recognized. The main difficulty comes from
the fact that inverse problems are ill-posed, the solu-
tions are very sensitive to changes in input data result-
ing from measurement and modelling errors, hence
may not be unique. An excellent discussion of diffi-
culties encountered in inverse analysis is well docu-
mented in the text on inverse heat conduction [1]. To
overcome such difficulties a variety of techniques for
solving inverse heat conduction problems have been
proposed in the literature [1-7]. The use of the adjoint
equation approach coupled to the conjugate gradient
[8~13] appears to be very powerful for solving inverse
heat conduction problems.

The mathematical formulation of this method con-
sists of the development of the sensitivity problem,
the adjoint problem and the gradient equations. The
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type of boundary conditions as well as the nature of
the inverse problem affect the formulation. Therefore,
the objective of this work is to present a multi-
dimensional unified formulation of the adjoint equa-
tion approach for solving inverse heat conduction
problems for situations in which no a priori infor-
mation is available about the unknown function.

In Section 2, the inverse problem is formulated as
an optimization problem over a space function and in
Section 3 the sensitivity problem is introduced. In
Section 4, the adjoint problem and the gradient equa-
tions are developed and in Section 5, it is shown that
the finite dimensional situation, that is, the problem
with a priori information about the function, becomes
a special case of the present method. Finally, in
Section 6, an algorithm is presented for the solution
of inverse transient heat conduction by the conjugate
gradient method.

2. FORMULATION OF THE INVERSE PROBLEM

2.1. The direct problem

We consider the following three-dimensional,
linear, direct, transient heat conduction problem in a
region 4, over the time interval from the initial time
t = 0 to the final time ¢ = ¢,

oT(r,0)

Cc() Y

—~V-A@VTE, 1) = g(r,1), inR.

(1a)

In order to illustrate the implications of different types
of boundary conditions in the formulation of the
inverse problem, we consider three different linear
boundary conditions, namely, convection, prescribed
heat flux and prescribed temperature on three differ-
ent boundary surfaces 4,, 4, and 4., respectively
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DuJ(Z) directional derivative of J at Z

d,, sensor location in the medium

E function space in which Z is to be found

e,.() error term defined by equation (16a)

fi1(r, £) boundary condition function for surface
A\, equation (1b)

f>(r, 1) boundary condition function for surface
A,, equation (Ic)

G(r) defined by equation (29¢)

h(r) heat transfer coefficient

H(f) defined by equation (27b)

J(Z) functional defined by equation (4)
K" defined by equation (43b)

M total number of measurement locations

NT  total number of time measurements

2 direction of descent, defined by equation
(40d)

Sy defined by equation (34)

NOMENCLATURE
A; boundary surface | t final time
C(r) heat capacity T temperature

Y,() measurement function, defined by
equation (15)
VA unknown function

Z.. estimated value of Z.

Greek symbols
%o positive regularization parameter
B defined by equation (40b)
o defined by equation (33)
v¥ defined by equation (38)
£ real number
o(r, 1)

sensitivity function defined by problem,
equations (15)
A(r)  thermal conductivity

p step size defined by equation (40e)

g; basis function defined by equation (7)

Y(r, 1) adjoint function defined by problem,
equations (16b}-(161).

l(r)%’ l)+h(r)T(r, £ =fi(r,f), onA, (1b)
i

0 < fo, o (0

T(r,t) = Ts(r,t), on A, (1d)

T(r,0) = T,(r), in & (le)

where C(r), A(r) and A(r) are strictly positive, 4,,i = 1,
2 and 3 are continuous boundary surfaces of the
region #, and ¢/6n; the derivative along the outward-
drawn normal to the boundary surfaces 4,, i = 1,2.

The physical significance of the function f(r, ¢) in
equation (1b) is

f‘] (l', t) = h(r)¢(r7 t):

where ¢(r, f) is the ambient temperature. As a special
case of this general formulation, the following form
is of practical interest :

[0 = h(0)$ (1) (1)

where the ambient temperature ¢(¢) varies with time
only.

for h(r) # 0

2.2. The measured temperature data
We assume that there are M sensors located at
the positions

r=d,, d,€% (2a)

for which temperature observations
Y.(t) =Y, (2b)
are available at times ¢, 0 <, <t, k=1,...,NT

and positions d,,, m = 1,..., M.

2.3. The inverse problem

We denote, by Z, the function to be determined by
the inverse analysis and Z,, its estimated value, if
available. In the present problem, the function Z can
be any one of the following quantities :

Z,(r, 1) = f1(r, 1) ; where f(r, 1) at the boundary sur-
face 4, is related to the ambient tem-
perature ¢(r,7) through the relation
fir, 1) = h(n)g(r, 0

Z,(r, 1) = f,(r, 1) the surface heat flux of 4,

Z(r, 1) = T(r, 1) the surface temperature on 4,

Z,(r) = A(r) the thermal conductivity

Z s(r) = C(r) the heat capacity

Z () = ¢(¢) the ambient temperature, indepen-
dent of position.

Let T(r, t ; Z) denote the solution of the direct prob-
lem ; that is, the temperature corresponding to a par-
ticular value of the unknown function Z.

The inverse problem for the ideal situation is
defined as follows:

Find Z such that
Yy = T(dn, 13 Z) 3
fork=1to NTand m=1to M.
Because of measurement or model errors, this equa-
tion needs to be solved in the least square sense. Then,

the inverse problem is defined as follows:

Find Z< E which minimizes the functional J(Z)
defined by
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1 [ M _
I2) =3 Z]IT(dm,t;Z)—Ym(t)lzdt

1
+ 3802~ Zul} @

where ¥,.(¢) is the measurement function considered
constant over the time interval [#, ., ,[ and defined
by

?m(t)z Yfrn te[tmsfk+l{; kzltONT (5)

o, is a positive regularization parameter, £ the func-
tion space in which Z is to be found, and | |7 the
norm associated to the scalar product (., .>z.

In the present problem, the following three possi-
bilities are considered for E:

() E= L*0, 1) = space of square integrable func-
tions on 10, ¢{, with the scalar product defined by

(Ze,Ze)p = J; Zo()Z4(2) dt. (6a)
(it) E = LY(#) = all square integrable functions on
A, with the scalar product defined by

(Zi,ZD>g = j ZMZr)dr i=4dor5 (6b)
R

(iii) E = L*(4,]0, t;]) = all square integrable func-
tions defined on 4, x |0, ;|, with the scalar product

(Z,Zyr= 4( ' j Zx D Z(x, ydrdt i=1,20r3.
0 J4;
(6¢)

More regular function spaces can be chosen, for ex-
ample, with square integrable first derivative functions
[14].

The dimensionality of this optimization problem is
characterized by the dimension of the function space
E over which the minimization occurs.

The functional optimization approach considered
here does not require any a priori information on the
nature of the function to be determined, hence, in
general it is infinite dimensional. For the special case,
when a priori information is available on the nature
of the unknown function Z(s), then Z(s) may be rep-
resented in the form

»
Z{sy = ; Z,as) G

where
{a.,i=1to P} is a set of basis functions of E
{Z,,i=1to P} is a P-dimensional vector in R”.

For such a case, the optimization problem becomes
Jfinite dimensional and the standard least square
method as well as the present method can be used for
the solution.

For the finite dimensional problem, the gradient
VJ(Z) is readily determined by the standard differ-
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ential calculus; but for the infinite dimensional prob-
lem, it is necessary to develop an adjoint problem in
order to compute the gradient VJ(Z) needed in the
minimization process. The use of the present method
for the solution of finite dimensional problems will be
described in Section 5.

2.4. Definition of VJ(Z)

The gradient of the functional J(Z), at point Z,
denoted by VJ(Z), is related to the variation of J at
this point by the general equation

J(Z+EAZ)—J(Z) = <VI(Z),eAZ>
+ (terms nonlinear in |AZ|) (8)

where (Z+¢AZ)e E and ¢ = real number.
The directional derivative of J at Z in the direction
AZ, denoted by D, J(Z), is defined by

HZ+eADY—-I(Z
D) =i EHADTID g,
and it is related to the gradient VJ(Z), by
DpzJ(Z) =<VIHZ),AZ);. (9%)

For example, if E = L*0, 1), then according to equa-~
tion (6a), D, J(Z) becomes

DLI(Z) = L VI ZAZ@ A (10)

In the following sections, by introducing sensitivity
and adjoint problems, we develop explicit expressions
for VJ(Z) in the form given by equations (9).

3. THE SENSITIVITY PROBLEM

3.1. Definitions

Let AT, be the increment of temperature resulting
from the change of the unknown function Z in the
amount eAZ, that is

ATy = T, £; Z+eAZ)—T(r, ;Z).  (11)

The directional derivative of T, D,,T(Z), evaluated
at {r, 7) in the direction AZ, is defined in the same way
as in equations (9), that is
T(r,t; Z+eAZ)—T(r,1;2Z)

S .

DyzT(x,t,Z) = ling
(12a)

We note that D,,7(r,t; Z) is a sensitivity function
which will be denoted by 0(r,¢); that is

Dy T(r,t;Z) = 0(r, 1). (12b)

To determine the problem defining the sensitivity
function, the direct problem given by system (1) is
written first for (Z+¢AZ), then for Z, the results
are subtracted, and the limiting process defined by
equation (12a) is applied.

To illustrate the procedure, we consider the fol-
lowing two specific examples.
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Case #1. The function f,(r, t) unknown. The func-
tion f(r, #) is unknown over the boundary surface 4,
and we wish to determine it by the inverse analysis. As
discussed previously, fi(r, 7) is related to the ambient
temperature $(r,1) through the relation f(r.7)=
hi{ryp(r, 1). Equations (1a)-(1e) being linear, the sensi-
tivity problem for this case is immediately written

as
C()agg) V-ANVOE ) =0, in® (13a)
A 9( d ) =Af(nD). ond, (13b)
26(r,
Ar) ,‘\;3(5_;9:0’ on A, (13¢)
f(r,)) = 0, on A, (13d)
0(r,0) =0, inZ. (13¢)

Case #2. The thermal conductivity unknown. The
thermal conductivity Z = A(r) in the medium is to be
stermined. For this case, by setting T(r, r; Z+
eAZ) = T{r,1; A+eAA) in equations (1a}-(1c), system

(1) becomes
Cr) ‘mr D v AmvTE D
= g(r, )+ VeAMr)VT(x,?), in# (14a)
107 e,
— f1(r 1) —AX) ?2%,})7 on A, (14b)
0700~ o~ 21 D on a,
{14c¢)
T(r, 1) = Ts(r, 1), onAd, (14d)
T(r,0) = To(r), in . (14¢)

Then by applying the definition of the direction
derivative defined by equation (12a), the sensitivity
problem for this case, takes the form

Cr )qu'—’t—) _V-AOVO(E, 1)
— VAADVT(, ), in# (152)
G )68(1- D h(r, 1) = — AAGr )87"( = D ond,
(15b)
l(r)ag(r D _pir )‘171’1) on 4, (150)
0(c,) =0, on :43 (15d)
B(r,0) = 0. in 4. (15¢)

Depending on the nature of the inverse problem, the
sensitivity function 6(r, 7) either depends on the tem-
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perature T(r, 1) or is independent of it. In the above
examples, 8(r, 1) depends on T(r, t) in case #2 and is
independent of it in case # 1.

4. THE ADJOINT PROBLEM AND
THE GRADIENT EQUATIONS

As discussed previously, for infinite dimensional
problems, an adjoint function (r,s) is needed to
determine the gradient VJ(Z) of the functional in
addition to the sensitivity function, O(r, 1).

We develop below first the adjoint problem and
then the gradient equations.

4.1. Adjoint problem
We consider the error terms ¢,,(r) defined by
e (1) =T(d,, ;Z)= Y, (), m=1,... M
{16a)

Then the adjoint function (r, 1) is taken as the solu-
tion of the following linear problem:

—cw ™™ _vamvien)
- }: enlt)-506—d,). in® (16b)
A(r) 11/(_,_) +h(r(r,1) =0, ond, (l6c)
()“g(—rﬁ 0. onA, (16d)
Y, t) =0, ond, (16e)
Y, t)=0, m=A (16f)

where 8(-) is the Dirac delta function.

Clearly, with no error, the adjoint problem has zero
solution. We note that in the adjoint problem, the
time is measured backwards from the final time 1, to
the initial time ¢ = 0. However, by defining a new
time variable t = #,—, the corresponding © domain
becomes from 1 = 0 to 1.

4.2. Gradient equations

We start with the definition of the functional J{Z)
given by equation (4), and compute the directional
derivative D,,J(Z2) of J at Z in the direction AZ,
according to definitions (9) and (12) and obtain

o M .
Dy J(Z) = J 2 (T@,, 1:2)=Y,.(0)
e |

x(DAZT(dmsI;Z))dt+d('<zwzegtaAZ>E- {17)

The integral term appearing on the right-hand side of
equation (17) is written in the form

1

Z (T, 1;2)~ Vo) (Da T 1, 2)) d

0 me i

o M -
:j Y. (T(d,, 1:Z)~ ¥, (1))
0 JE m=1

x 8(r—d, )0, ) drdr  (18)
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where we utilized the definition of the delta function
atr = d,, and the sensitivity function.
Then equation (17) takes the form

1 M
DAZJ(Z)=L R Zl(T(dm,t;Z)'—f’m(f))
X 0(r—d,)0(r, 1) dr dt+ 0 Z — Z s, AZ>y.
(19a)

Equations (16a) and (16b) are now utilized to write
equation {19a) as

bt = [ [ (e ™% voewe, )

X 0(r, 8) dr dt +0g{Z~ Zo, AZ>5. (19b)

Integrating by parts with respect to 7 and using
Green’s formula, equation (19b) takes the form

Dad(Z) = L f L (C(r) ‘39(6’; D _vamver, t))

00(r, 1)

< Y, :)drdH—Zf J (/L() yir, 0

(1)

—Amo(r, 1) n )dA dt—L(C(r)l/l(r,tr)H(r,tr)

~ CEOW(r,000(r,0)) dr + 0o{Z — Zs1, AZ ..
Applying the boundary conditions given by equa-

tions (16¢)—(16¢) and the final condition given by
equation (16f), this result is written as

Dapl(Z) = J J <C(r)‘3—9g{i’—) —V- AV, x))

x Yr, t)drdt+f f ( 68( 2 t))

XY, f) dd de+ J f (A()ae(r ’))w( ) dd de

_ ﬁ " L (/1( )‘3"‘;( )>9(r, fdd dt

+f COW(r,000(r,0) dr + a{Z~ Zoys, AZD5. (21)

@0

Once the sensitivity function 8(r, 1) is determined
from the solution of the sensitivity problem and the
adjoint function ¥ (x, £) obtained from the solution of
the adjoint problem (16), the directional derivative
D,,J(Z)is computed from equation (21). Utilizing its
definition, given by equation (9), D,,J(Z) is expressed
in the form of a scalar product as

DpzJ(2) = (VI(Z),AZ>,. 22)

To illustrate the physical significance of the result
given by equation (22), we examine the two examples
considered previously.
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Case #1. The function f,(r, t) unknown. The func-
tion fi(r,£) is unknown over the boundary surface
4, and we wish to determine it by the inverse analysis.
As discussed previously, fi(r, f) is related to the am-
bient temperature ¢(r,r) through the relation
fl(rs t) = f!(l') * ¢(l‘, t)*

The sensitivity problem (13) is utilized to simplify
equation (21), to obtain

D H(Z) = L L AZ(r, W, 1) dA di
+8€Q<Z~' Zesr » AZ)E . (23)

For this particular case, we have Z = fi(r, 1) the
function space E= L*(A,x10,4]). Therefore, the
definition of the scalar product for this particular case
is given by equation (6c). Utilizing this definition (6c),
equation (23) becomes

DAZJ(Z) = <!I/5 AZ>E+a0<Z“Zesn AZ)E
== <d/+a0(z_zcst:AZ>E' (24)

Then according to equation (22), the gradient of J
is a function of (r, 1) defined on 4, x 0, ¢;{, given by
Vi, t;Z) = y(r, D+ (Z(r, ) — Zeu(r, 1)), (25)

A special case. The function ¢(t) unknown. As a
further special case, we consider equation (1f), that is

Sile, 0 = h(r)o (1) (1n
where A(r) is known and ¢(¢) is to be determined.
We have Z = ¢(5), AZ = A¢(¢) and the function
space E = L*0,1;). Therefore, the definition of the
scalar product for this case is given by equation (6a).
Utilizing the definition (6a), equation (23) becomes

D) = f Az ( J KO, 1) dA) dt
o 4,
+0o{Z—=Zy,AZDy
= J‘IIAZ(t)H(t) At Z~Zey, AZ> g
0

= <H’ AZ)E'%'{XQ(Z—chh AZ>E
= <H+a0(Z_Zest)s AZ)E* (26)

Thus according to the definition (22), the gradient
of J is a function of ¢ defined on 10, ][, given by

VI(t;2) = HO)+oo(Z2() — Zou (1)) (272)

where

H(t) = ‘[ (Y (r, 1) dA. (27b)
A4y

In the foregoing analysis, to minimize the functional
J{Z) in equation (4), we prefer to introduce a regu-
larization term, i.e. ¢, > 0, and use the stopping cri-
teria of equation (40g). If no regularization is used
(i.e. oy = 0), then equation (16f) leads to H(z;) =0
and VJ(t, Z) = 0. For such a case, a good estimate is
needed for the final time condition Z(¢)). A method
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described in ref. [15] can be used to alleviate the in-
accuracy associated with the lack of knowledge about
Z(t;).

Case #2. Thermal conductivity unknown. Thermal
conductivity A(r) is to be determined on #. The sen-
sitivity problem (15) is utilized to simplify equation
(21). We obtain

Dy, J(Z) = f[f V- (AZ@VI(x, 0))y(r, 1) dr ds

2 I
-y J J AZ(r)aTa(: D e 1) da de

+ oL —

ZestaAZ>E- (283)

Green’s formula is applied to the first integral term
on the right-hand side of equation (28a)

J f V- (AZMVT(r, ))v(r, 2) dr de

[ o

- f j AZOVT(r, OV (r, 1) dr dt.

,1) dA dr

Then equation (28a) takes the form

DaJ(Z) = — L L AZ(®)VT(r, HVY(r, £) dr dt

+ J J AZ(r) (r W(r, ?) d4 dr
0 A

+a0<Z—ZesHAZ>E' (28b)

In view of the boundary condition (16e), this result
simplifies to

D J(Z) = — L AZ(r) ( L VT(x, HVYIr, 1) dt> dr

too{Z—~Z,AZ>,;. (28c)

For this particular case, we have Z = A(r) and the
function space E = L*(#). Therefore, the definition
of the scalar product is given by equation (6b).
Utilizing the definition (6b), equation (28c) becomes

DAZJ(Z) = - j AZ(I‘)G(]’) dr+a0<Z—ZestaAZ>li
g4
= “<G5 AZ>E+“O<Z_ZesUAZ>E
= <_G+a0(Z_Zest)’ AZ>1' (293)

Thus, according to the definition (22), the gradient of

J is a function of r defined on £, given by
VI(r;Z) = —G(r)+ao(Z(r) — Zu(r))  (29b)

where

Y. JARNY et al.

G(r) = Llfvr(r, HVU(r. 1) dr. (29¢)

5. THE FINITE DIMENSIONAL CASE

The solution of the finite dimensional problem for
which the unknown function Z is expressed in the
form of equation (7), can be readily obtained as a
special case from the generalized solution methodology
presented for the infinite dimensional problem.

The only change in the solution methodology is the
computation of the gradient defined by equations (21)
and (22).

When Z is given by equation (7), the variation AZ
and the gradient VJ(Z) are given respectively by

Y AZa(s)

il

AZ(s) = (30)

P
VJ(s) = Y VJo,(s). (31
i=1

Now we need to determine the P components VJ,
of the gradient vector VJ. The general procedure is
similar to that described previously for the infinite
dimensional case. Here we illustrate the basic
approach by again considering cases #1 and #2
already presented.

Case # 1. The function f(r,t) unknown. The func-
tion f,(r, ) is unknown over the boundary surface 4,
and it is to be determined by the inverse analysis.
The physical significance of f,(r, 7) in relation to the
ambient temperature is as discussed previously.

Equation (23) takes the form

PP

Z AZyi+o Y Y AZSAZ,—

f— i=1 j=1

DAZJ(Z) Z/Lr:sl)

(32

where

vi= Y008 = ﬁ j Y(r,no(r,n)d4 dr - (33)

Sij:<ate01>ﬁ'= l:l """ P,]: "“«'P‘ (34)
Equation (32) can be rearranged as
P
D J(Z) =Y AZNJ, (35)
i=1
where
I
VJi =yt Z SiZj~Zje), i=1,....P. (36)
=1

Thus, once ¥(r, £) is available from the adjoint prob-
lem, v, is determined from equation (33) and the P
components of the gradient VJ, are determined from
equation (36) since the basis functions o; are known.

Case #2. The thermal conductivity unknown. Equa-
tion (28¢c) takes the form
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P P P
Dy J(Z) = Z AZy¥* +a, Z Z AZiSij(Zj_Zj,est)
i=1

i=1j=1
(37

where
¥ =(=G, 0>, = J —G(®)o(r) dr (38)

G(r) is the same as equation (29¢) and S;; is the same
as equation (34). Hence, the P components VJ, of the
gradient are determined from

P
VJi = ‘Vi*—*—ao Z Sij(Zj_Zj.est)a i= 19 (R P. (39)
j=1

J

6. THE SOLUTION ALGORITHM

The inverse problem has been formulated in Section
2 as an infinite dimensional optimization problem of
the functional J defined by equation (4). Now, we
need to find Z such that it will minimize J(Z), i.e.
min J(Z).

ZeE

Having the sensitivity and adjoint problems and the
gradient function VJ(Z) available, we now describe
the conjugate gradient method for minimizing the
functional J(Z) in order to solve the inverse problem.

6.1. Conjugate gradient method

The basic steps in the application of the Polak-
Ribiere version [16] of the conjugate gradient method
applied to the solution of the above problems is
described below.

Step # 1. Choose an initial guess Z°¢ E; for example,
Z°=Z_,, or Z° = constant. Set n = 0.
Step #2. Define the scalar §*:

p =0, ifn=0 (40a)
_ -1
B = <W(Zn)’HVVJJ((ZnZn)_I;7|é(Z" Ve ifn> 0.
(40b)
Step # 3. Define the direction p"e E:
p’ = VJ(ZY, ifa=0 (40¢)
p=VIHZH)+ppt, ifn>0. (40d)
Step #4. Define the step size p"e #
p" = Arg min J(Z" — pp"). (40e)
Step #35. Set
Znrl = 7~ pnp?, (40f)
Step #6. If
|Z"+ ! —2Z"||2 < &, stop. (40g)

Otherwise, set n = n+ 1, go to step #2.
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6.2. Implementation of the conjugate gradient method
Jor solving inverse probiem

Depending on the nature of the unknown function
Z to be determined, the different steps of the above
algorithm can be implemented in the following way:

Steps #2and #3:

o solve the direct problem (1), forward in time, to
obtain the temperature T(d,,t; Z");

e compute the error terms e, (f; Z*) from equation
(16a) and the functional J(Z") from equation (4) ;

e solve the adjoint problem (16b)—(16f), backward
in time, to obtain y(r,¢; Z");

e compute the gradient VJ(Z") from the gradient
equation (21);

e compute the scalar f” and the direction p” from
equations (40a) to (40c).

Remark. Depending on the nature of the problem,
the general equation (21) needs to be simplified and
expressed in terms of the adjoint function ¥ before
computing the gradient VJ(Z"). For example, for the
problem of determining f/(r, £}, equation (21) reduces
to equation (25) and for the thermal conductivity
problem, it reduces to equation (29).

Step #4: in the computation of the step size p", two
different cases need to be distinguished :

(i) sensitivity function 6(r,?) depends on tem-
perature T(r, ) ;

(ii) sensitivity function 8(r,?) is independent of
T(r, 7).

This matter is illustrated below by examining the
two cases considered previously.

Case #1. The function f(r, t) unknown. The func-
tion f(r, ?) is to be determined on the boundary sur-
face 4,. Because of the linearity of the direct problem
(1), the functional J(Z) is quadratic with respect to Z
as shown below.

The linearity of T(Z) in Z implies that

T(r,1; Z—pAZ) = T(x,t; Z)— pDa,T(r, ;AZ)

=T, t;2)—pl(r,1) 41)
where 0(r, ) is the solution of the sensitivity problem
(13), and p is a scalar.

Let us set AZ(x, f) = p"(r, t) where p” is defined by
equation (40d) and set Af\(r,1) = AZ(r, t) = p"(r, t) in
the sensitivity problem (13). The resulting solution of
problem (13)is denoted by 8"(r, £). Then the functional
J defined by equation (4), at the point (Z” — pp") takes
the form

1 [«
J(Z~pp") =5 |T(d,n, 25 2" — pp”)
=1

0 m

=Y, (0P dt+ao2|1Z" —pp" — Ze I (422)
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M
2 1T, ¢

m=1

("
HZL—pp") = J ;27— p8'(d,,
= Jo

— Vo (D de 42,212 — pp" — Zoy |12 (42b)

1’ M _ .
HZ"—pp")y = ’(j Y AT(d,, . 1: 2~ ¥,(0)) dr

Vo=t

M
Foay| 27— ) ,,(J Y (T(d,,. 1:7")

0 m=1

N,

Wy 1) di 2,7 p>)

2 oM

+ 5 (J S 107, 0 dr+ i p Jiv) (42c)
O -t

Ultilizing the definition of the gradient VJ(Z) given

by equation (9b) and the directional derivative ex-

pressed in the form given by equation (17), we obtain

7N H (3 H u )l n
KT = pp") = HZ = pVIZ >+ E) K
(43a)
where K" is the constant given by
o M
K' = J Z (0°(d,,., )7 de4-a, [ p*liz.  (43b)
O m=1

Then according to equation (43a), J(Z" — pp”) is quad-
ratic in p. This is a general result which is valid when
the solution of the direct problem 7(Z) is linear with
respect to the function Z to be determined.

Hence the best value p” which minimizes J(Z" — pp")
according to equation (40e¢) is obtained by minimizing
equation (43a) with respect to p

VAZD. P
Kn i

"o__

(44)

The sensitivity function ©"(r, ) needed in the com-
putation of equation (44) is determined from the solu-
tion of the sensitivity problem by setting AZ = p". The
solution algorithm is shown schematically in Table 1.

Case #2. The thermal conductivity unknown. The
thermal conductivity A(r) is to be determined. In that
case the solution T(Z) of the direct problem (1) is not
linear with respect to the unknown function 7 = 7.
Then J(Z) is not quadratic as in the previous case. So
the determination of the scalar p" may be achieved
by dichotomy or Fibonacci methods [16] in order to
satisfy equation (40e).

Another approach consists of linearization of

T(r, t; Z+pAZ), that is, by considering the approxi-
mation
T, 1. Z—pAZ) = T(r,1; 2y —pDr,T(r.1;AZ)
(45)
=~ T(r,1;Z)— pO(r.1). (46)

For such a case, the solution methodology described
previously becomes applicable.

JARNY et al.

Table 1. Solution algorithm for the conjugate gradient
method
Steps

( omputatlons

Equations

I A d\dlldblL

2 the error terms ¢, (¢; Z") (16a)
the functional J(Z") (4)
the adjoint function ¥(x, /: Z*) (16b)-(16f)
the gradient VJ(Z") (25), (27). (29).
(36) or (39)

the scalar " (40a), (40b)

3 the direction p” (40c), (40d)
4 the sensitivity function t(r, 1) (13}, (15), etc.
the scalar p” (40e), (43b), (44)
5 AR (401)
(40&)

6 dppl) the stoppmg criteria

7. CONCLUSIONS

A general methodology has been proposed for for-
mulating the solution of the inverse heat conduction
problem (IHCP) as the solution of infinite dimen-
sional optimization problem (IDOP). The approach
assumes no a priori information on the nature of the
unknown functions to be determined by the inverse
analysis. Finite dimensional problems, which occur
when a priori information is available, become merely
a special case of the present approach.

A general algorithm has been presented for solving
IHCP by iteration. When the direct problem is linear
with the unknown function to be determined, then the
functional to be minimized is quadratic convex, the
solution is unique and the convergence of the sequence
defined by the conjugate gradient method is guaran-
teed if some regularization is introduced, i.c. if the
rcgularization parameler o, is positive. In the case
the direct problem is nonlinear with the unknown
function, the functional to be minimized may have
local minima. The method allows the determination
of such minima by varying the initial guess.

Illustrative examples have been presented for the
determination of unknown surface heat flux, ambient
temperature and thermal conductivity. The method
applies to the determination of other properties such
as heat capacity, surface temperature, spatially
varying heat transfer coefficient, initial temperature,
generation term. The steady-state inverse heat con-
duction problems arc also a special case of the present
method.
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UNE METHODE GENERALE D'OPTIMISATION POUR LA RESOLUTION DE
PROBLEMES INVERSES MULTIDIMENSIONNELS DE CONDUCTION

Résumé—Une formulation est présentée pour résoudre des problémes inverses de conduction 3D comme
un probléme général d’optimisation, par un algorithme de gradient conjugué. Cette formulation comporte
les equations de sensibilité, les équations adjointes et les équations du gradient. Un algorithme est décrit
pour obtenir les conditions surfaciques (flux de chaleur ou température), les variations spatiales de la
conductivité et de la capacité thermique, & partir d’enregistrements de la température, effectués au sein du
solide. Dans cette approche du probléme, aucun choix a priori est nécessaire sur la fonction inconnue a
déterminer. On montre que les problémes comportant un choix a priori de la fonction inconnue deviennent
des cas particuliers de cette approche générale,

EINE ALLGEMEINGULTIGE OPTIMIERUNGSMETHODE ZUR LOSUNG
MEHRDIMENSIONALER PROBLEME DER INVERSEN WARMELEITUNG UNTER
VERWENDUNG DES KONZEPTES DER ADJUNGIERTEN GLEICHUNG

Zusammenfassung—FEs wird ein Ansatz zur Losung dreidimensionaler Probleme der inversen Wirme-
leitung vorgestellt. Zur Behandlung des verallgemeinerten Optimierungsproblems wird das Konzept der
adjungierten Gleichung in Verbindung mit dem konjugierten Gradientenverfahren benutzt. Die Formu-
lierung besteht aus dem Empfindlichkeitsproblem, dem adjungierten Problem und den Gradientengleich-
ungen. Es wird ein Losungsalgorithmus zur Bestimmung der Oberfldchenbedingungen (Wirmestromdichte
oder Temperatur), der rtlichen Wirmeleitfahigkeit und der Warmekapazitit vorgestellt. Der Algorithmus
basiert auf den aufgezeichneten zeitlichen Temperaturverldufen innerhalb des Festkorpers. Bei diesem
Ansatz wird keine Vorabinformation iiber die zu ermittelnde Funktion bendtigt. Liegen bereits Infor-
mationen iiber die Funktion vorab fest, so stellt dies einen Sonderfall des allgemeinen Losungsweges dar.

OBH{UIT METOJ{ ONTHMM3ALIMM C UCHOJB3OBAHUEM CONPSXEHHOIO
VPABHEHHWS JIVIs1 PEHIEHHUA 3AJJAYHA MHOT'OMEPHOH OBPATHOM
TEILJIOMPOBOAHOCTH

Ammoramms—IIpencrasnesa TpexmepHas $opmyaupoBka ofGpatHO# 3aJad¥d TEMIONPOBONHOCTH KAk
olmeit 327391 ONTHMMIAIMY C HCIOAB30BAHHEM METOAa CONPAKCHHbBIX YPABHEHHH B COMETARMH C aJiro-
puTMOM rpagnenTa. POpMYIHPOBKA BKIIOYAET 33434y YCTOHYHBOCTH, CONPAXKEHHYIO 3aka4y ¥ ypaBue-
HEA rpafueHTa. [IpHBOAMTCA QITOPHTM PCLICHHA [UTS OLESHKH YCIOBHA HA MOBEPXHOCTH (T.€. TEIIOBOro
NOTOKA HJIM TEMNEPATYpPhbI), 8 TAKXKE 3aBHCALINX OT KOOPAMBAT KOMPPMIMEHTA TEIIOGHPOBOIHOCTH H
TEMIOCOAEPXARNS HA OCHOBE JAHHBIX [0 HECTAUMOHAPHOH TEMIEPATYpe, PErHCTPHPYEMOH BHYTpH
TBepaoro rtena. Ipa HCNoNB3yeMOM IIOAXOJE OTCYTCTBYET HEOGXOAMMOCTE B aNPHOPHO# HHpopMaLEy
06 uckomoit Pynkumu. ITokasaHo, 4TO 3a7a4d, B KOTOPBIX HCIIOJIB3YETCH Takas MHGOPMALHS, TIpenc-
TaBASIOT OCOOBIE CNIyYaH.



