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Abstract-A three-dimensional formulation is presented to solve inverse heat conduction as a general 
optimization problem by applying the adjoint equation approach coupled to the conjugate gradient 
algorithm. The formulation consists of the sensitivity problem, the adjoint problem and the gradient 
equations. A solution algorithm is presented for the estimation of the surface condition (i.e. heat flux or 
temperature), space dependent thermal conductivity and heat capacity from the knowledge of transient 
temperature recordings taken within the solid. In this approach, no a priori information is needed about 
the unknown function to be determined. It is shown that the problems involving a priori information about 

the unknown function become special cases of this general approach. 

I. INTRODUCTION 

THE USE of inverse analysis for the estimation of sur- 
face conditions such as temperature and heat flux, 
or the determination of thermal properties such as 
thermal conductivity and heat capacity of solids by 
utilizing the transient temperature measurements 
taken within the medium, has numerous practical 
applications. For example, the direct measurement of 
heat flux at the surface of a wall subjected to fire, at 
the outer surface of a re-entry vehicle or at the inside 
surface of a combustion chamber is extremely difficult. 
In such situations, the inverse method of analysis, 
using transient temperature measurements taken 
within the medium can be applied for the estimation 
of such quantities. However, difficulties associated 
with the implementation of inverse analysis should 
also be recognized. The main difficulty comes from 
the fact that inverse problems are ill-posed, the solu- 
tions are very sensitive to changes in input data result- 
ing from measurement and modelling errors, hence 
may not be unique. An excellent discussion of diffi- 
culties encountered in inverse analysis is well docu- 
mented in the text on inverse heat conduction [l]. To 
overcome such difficulties a variety of techniques for 
solving inverse heat conduction problems have been 
proposed in the literature [l-7]. The use of the adjoint 
equation approach coupled to the conjugate gradient 
[8-131 appears to be very powerful for solving inverse 
heat conduction problems. 

The mathematical formulation of this method con- 
sists of the development of the sensitivity problem, 
the adjoint problem and the gradient equations. The 

t Permanent address : MAE Department, Box 7910, North 
Carolina State University, Raleigh, NC 27695, U.S.A. 

type of boundary conditions as well as the nature of 
the inverse problem affect the formulation. Therefore, 
the objective of this work is to present a multi- 
dimensional unified formulation of the adjoint equa- 
tion approach for solving inverse heat conduction 
problems for situations in which no a priori infor- 
mation is available about the unknown function. 

In Section 2, the inverse problem is formulated as 
an optimization problem over a space function and in 
Section 3 the sensitivity problem is introduced. In 
Section 4, the adjoint problem and the gradient equa- 
tions are developed and in Section 5, it is shown that 
the finite dimensional situation, that is, the problem 
with a priori information about the function, becomes 
a special case of the present method. Finally, in 
Section 6, an algorithm is presented for the solution 
of inverse transient heat conduction by the conjugate 
gradient method. 

2. FORMULATION OF THE INVERSE PROBLEM 

2.1. The direct problem 
We consider the following three-dimensional, 

linear, direct, transient heat conduction problem in a 
region 9, over the time interval from the initial time 
t = 0 to the final time t = tf 

a T(r, f) 
C(r) at ___ - V * I(r)VT(r, t) = g(r, t), in W. 

(la) 

In order to illustrate the implications of different types 
of boundary conditions in the formulation of the 
inverse problem, we consider three different linear 
boundary conditions, namely, convection, prescribed 
heat flux and prescribed temperature on three differ- 
ent boundary surfaces A,, A2 and A3, respectively 
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NOMENCLATURE 

4 boundary surface i tr final time 
C(r) heat capacity T temperature 
D&Z) directional derivative of J at Z Y,,,(t) measurement function, defined by 

cr, sensor location in the medium equation (15) 
E function space in which Z is to be found Z unknown function 
e,(t) error term defined by equation (16a) Z Clt estimated value of Z. 
f’,(r, t) boundary condition function for surface 

A , , equation (1 b) Greek symbols 
f2(r, 1) boundary condition function for surface a0 positive regularization parameter 

A,, equation (lc) P" defined by equation (40b) 
G(r) defined by equation (29~) II defined by equation (33) 
h(r) heat transfer coefficient .;;* defined by equation (38) 
H(t) defined by equation (27b) I: real number 
J(Z) functional defined by equation (4) O(r, t) sensitivity function defined by problem, 
K” defined by equation (43b) equations (15) 
M total number of measurement locations l(r) thermal conductivity 
NT total number of time measurements P step size defined by equation (40e) 

P” direction of descent, defined by equation (T, basis function defined by equation (7) 

(40d) $(r? t) adjoint function defined by problem, 

SV defined by equation (34) equations (16b)-( I6f). 

k(r) T:d +h(r)T(r, t) = f, (r, t), on A, (lb) 
I 

T(r, t) = T,(r, t), on A, (14 

T(r,O) = T,(r), in d (le) 

where C(r), A(r) and h(r) are strictly positive, A,, i = 1, 
2 and 3 are continuous boundary surfaces of the 
region W, and d/an, the derivative along the outward- 
drawn normal to the boundary surfaces A,, i = 1,2. 

The physical significance of the functionf,(r, t) in 

equation (1 b) is 

f‘, (r, t) = h(r)&r, t), for h(r) # 0 

where 4(r, t) is the ambient temperature. As a special 
case of this general formulation, the following form 
is of practical interest : 

h (r, 4 = W4 (0 Uf) 

where the ambient temperature 4(t) varies with time 

only. 

2.2. The measured temperature data 
We assume that there are M sensors located at 

the positions 

r=d,,,, d,E9 (24 

for which temperature observations 

Ym(tk) s Y:, (2b) 

Y; = T(d,,t,,Z) 

fork=ltoNTandm=ltoM. 

(3) 

Because of measurement or model errors, this equa- 
tion needs to be solved in the least square sense. Then, 
the inverse problem is defined as follows : 

are available at times fk, 0 < fk < tf, k = 1,. , NT Find ZE E which minimizes the functional J(Z) 

and positions d,,,, m = 1,. , M. defined by 

2.3. The inverse problem 
We denote, by Z, the function to be determined by 

the inverse analysis and Z,,, its estimated value, if 
available. In the present problem, the function Z can 

be any one of the following quantities : 

Z, (r, t) = f’, (r, t) ; wherej”, (r, I) at the boundary sur- 
face A, is related to the ambient tem- 
perature 4(r, t) through the relation 

.fi (r, 0 = h(r)$(r, 0 
Z,(r, t) s fi(r, t) the surface heat flux of A z 
Z,(r, t) = T,(r, 1) the surface temperature on A, 

Z,(r) 5 L(r) the thermal conductivity 

Z,(r) E C(r) the heat capacity 
Z,(t) = 4(t) the ambient temperature, indepen- 

dent of position. 

Let T(r, t ; Z) denote the solution of the direct prob- 
lem ; that is, the temperature corresponding to a par- 
ticular value of the unknown function Z. 

The inverse problem for the ideal situation is 

defined as follows : 

Find Z such that 
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J(Z,=;p’ f lT(&,t;Z)-F,&)l’dt 
0 m=l 

+ ;@&-z& (4) 

where F,,,(t) is the measurement function considered 
constant over the time interval [tk, tk+ ,[ and defined 

by 

y,,&)= y”,, to[t,,t,+,[; k= I toNT (5) 

a, is a positive ~gula~zation parameter, E the func- 
tion space in which 2 is to be found, and 11 112 the 
norm associated to the scalar product (. , .)E. 

In the present problem, the following three possi- 
bilities are considered for E : 

(i) E = L2(0, tf} = space of square integrable func- 
tions on 10, trf, with the scalar product defined by 

(z,, Z,), = 
s 

If Z,(t).&(t) dt. (6a) 
0 

(ii) E = Lo* = all square integrable functions on 
B, with the scalar product defined by 

(Zi, Zi), = Zi(r)Zi(r) dr i = 4 or 5. (6b) 

(iii) E = L’(A,]O, tf[) = all square integrable func- 
tions defined on A, x 10, trl, with the scalar product 

(.Zi, Z?), = + 
ss 

Z!(r, t).&(r, f) dr dr i = 1,2 or 3. 
0 4 

(64 

More regular function spaces can be chosen, for ex- 
ample, with square integrable first derivative functions 

1x41. 
The dimensionality of this optimization problem is 

characterized by the dimension of the function space 
E over which the minimization occurs. 

The functional optimization approach considered 
here does not require any a priori information on the 
nature of the function to be determined, hence, in 
general it is i$inite dimensioplal. For the special case, 
when a priori information is available on the nature 
of the unknown function Z(s), then Z(s) may be rep- 
resented in the form 

Z(s) = i ZfO,(S) (7) 
i= 1 

where 
We note that DAzT(r, t; Z) is a sensitivity function 
which will be denoted by 0(r,t) ; that is 

{ci, i = 1 to P} is a set of basis functions of E 

(Z,, i = 1 to P) is a P-dimensional vector in RP. 
D,,T(r, t; Z) = 0(r, t). (12b) 

For such a case, the opti~~tion problem becomes 
finite dimensional and the standard least square 
method as well as the present method can be used for 
the solution. 

To determine the problem defining the sensitivity 
function, the direct problem given by system (1) is 
written first for @‘+&AZ), then for Z, the results 
are subtracted, and the limiting process defined by 
equation (12a) is applied. 

For the finite dimensional problem, the gradient To illustrate the procedure, we consider the fol- 
VJ(Z) is readily determined by the standard differ- lowing two specific examples. 

ential calculus ; but for the infinite dimensional prob- 
lem, it is necessary to develop an adjoint problem in 
order to compute the gradient VJ(Z) needed in the 
minimization process. The use of the present method 
for the solution of finite dimensional problems will be 
described in Section 5. 

2.4. Definition of VJ(Z) 
The gradient of the functional J(Z), at point 2, 

denoted by VJ(Z), is related to the variation of J at 
this point by the general equation 

J(Z+cAZ)-J(Z) = (VJ(Z),EAZ)~ 

+ (terms nonlinear in 11 AZ 11) (8) 

where (Z + &AZ’) E E and E = real number. 
The direcfionat derivative of J at Z in the direction 

AZ, denoted by Dd(Z), is defined by 

D*,J(Z) = lim 
J(Z+cAZ)-J(Z) 

e-0 E 
(9a) 

and it is related to the gradient VJ(Z), by 

D=J(Z) = (VJ(Z),AZ),. (9b) 

For example, if E = L2(0, tf), then according to equa- 
tion (6a), D,, J(Z) becomes 

s 

‘I 
DuJ(Z) = VJ(f ; Z)AZ(t) dt. (10) 

0 

In the following sections, by introducing ~nsiti~ty 
and adjoint problems, we develop explicit expressions 
for VJ(Z) in the form given by equations (9). 

3. THE SENSITIVITY PROBLEM 

3.1. De~~i~io~ 
Let AT,,, be the increment of temperature resulting 

from the change of the unknown function Z in the 
amount &AZ, that is 

AT,,, = T(r, t;Z+sAZ)-- T(r, t;Z). (11) 

The directional derivative of T, D,,T(Z), evaluated 
at (r, t) in the direction AZ, is defined in the same way 
as in equations (9), that is 

Dbz T(r, t ; Z) = p_q 
T(r, t ; Z+sAZ)- T(r, t ; Z) 

E 

Wa) 
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Case # 1. The function ,f,(r, t) unknown. The func- 
tion f”, (r. t) is unknown over the boundary surface A, 
and we wish to determine it by the inverse analysis. As 
discussed previously, ft (r, t) is related to the ambient 
temperature &(r, t) through the relation f’,fr, t) = 
h(r)$+, t). Equations (I a)-(le) being linear, the sensi- 
tivity problem for this case is immediately written 
as 

a&r, 0 
C(r) c?r ~- - V * i(r)V@(r, t) = 0, in .% (I 3a) 

a@@, 6 
n(r) -an __ +h(rW(r, t) = At’, (r, t). on A, (13b) 

I 

qr) y_g! = 0, onA, (13c) 
z 

@(r,t)=O, onA, 03d) 

B(r,O) = 0, in -3. U3e) 

Case #2. The thermal conductivity unknown. The 
thermal conductivity 2 = l(r) in the medium is to be 
determined. For this case, by setting T(r, t; Z+ 
&AZ) 3 T(r, t ; d +&AA) in equations (lat_( 1 c), system 
(I) becomes 

3 T(r, t) 
C(r) at ____ -V * /i(r)VT(r, t) 

= g(r, t)+V&A.rZ(r)VT(r, t), in d (I4a) 

a T(r, 0 
A@> an - + h(r)Tfr, t) 

1 

= f‘, (r, t) -EAl.(r) %!?‘~), 
an, 

on A, (14b) 

dT(r, t) 
i(r) -r 

8 T(r, t) 
= fi(r, t) -~Ad(r)~----- 

z 3% 
, onA, 

(14c) 

T(r, t) = T,(r, 0, on A 3 (144 

T(r,O) = To(r), in 3. (144 

Then by applying the definition of the direction 
derivative defined by equation (12a), the sensitivity 
problem for this case, takes the form 

dO(r, t) 
C(r)- at - -V * l(r)W(r, t) 

= VAd(r)VT(r, t), in .% (15a) 

a@&, t> 
a@) 7 

itT(r, t) 
+ h(r)@, t) = -Al(r) 7, on A1 

I 1 

U5b) 

a@(r, 0 
W+- = -A,i(r)T3, on A, (15~) 

2 2 

@(r,t) =O, on A, (154 

B(r, 0) = 0, in 8’. Use) 

Depending on the nature of the inverse problem, the 
sensitivity function $(r, t) either depends on the tem- 

perature T(r, t) or is independent of it. In the above 
examples, 0(r, t) depends on T(r, t) in case #2 and is 
independent of it in case # 1. 

4. THE ADJOINT PROBLEM AND 

THE GRADIENT EQUATIONS 

As discussed previously, for infinite dimensional 
problems, an adjoint function $(r, t) is needed to 
determine the gradient VJ(Z) of the functional in 
addition to the sensitivity function, O(r, t). 

We devetop below first the adjoint problem and 
then the gradient equations. 

4.1. A4joint problem 
We consider the error terms c,,,(t) defined by 

e,,;(t) = T(d,,,,t;Z)- F,,,(t), m = I,. . .M. 

ilha) 

Then the adjoint function $(r, t) is taken as the solu- 
tion of the following linear problem : 

= .f, e,,(r)*&(r--ii,,,), in 9 116b) 

a*@, 0 
E*(r) --:---- + h(r)$(r, t) = 0, on A, (16~) 

onI 

$(r. t) = 0, on A, (16ei 

Il/(r, t,) = 0, in J (If3 

where 6(s) is the Dirac delta function. 
ClearIy, with no error, the adjoint problem has zero 

solution. We note that in the adjoint problem, the 
time is measured backwards from the final time fr to 
the initial time t = 0. However, by defining a new 
time variable t = tf,- t, the corresponding z domain 
becomes from z = 0 to 8,. 

4.2. gradient equations 
We start with the definition of the functional J(Z) 

given by equation (4), and compute the directional 
derivative D,J(Z) of J at Z in the direction AZ, 
according to definitions (9) and (I 2) and obtain 

L)&(Z) = 
s 
i:_ mi, (T(d,,, r;Z)- ~,,(N 

x(DarT(d,.t;Z))dt+r,,(Z-Z,,t,AZ)E- (17) 

The integral term appearing on the right-hand side of 
equation (17) is written in the form 

~~,(T(d,,t;~-~~(t))(D,T(~~~.t;Z))dt 

= 
IS 

” 91 ,c, (T(&, r:Z)- ~&)I 
0 

x 6(r -d,)B(r, t) dr dr (18) 



~timi~tion method using adjoint equation for solving ~uItidim~nsiona1 inverse heat conduction 2915 

where we utilized the definition of the delta function 
at r = d,, and the sensitivity function. 

Then equation (17) takes the form 

D&J(Z) = 
II 
:’ 81 mt, (7%8#2* t;Z)- C(Q> 

xS(r-d,)8(r,t)drdr+ao(Z-Z,,,,AZ)E. 

(19a) 

Equations (16a) and (16b) are now utilized to write 
equation (19a) as 

xf?(r,t)drdt+ar,(Z-Z,,,AZ),, (19b) 

Integrating by parts with respect to t and using 
Green’s formula, equation (I9b) takes the form li ~!4,Jm = JJC W, 0 I_____ -VA(r)W(r, t) 0 SC C(r) at ) 1, x $(r, 0 dr dt + x JJC L(r)- 

i 0 A, 
‘:: l) t&r, t) 

t 

w(6 4 
- 4rP(r, t) 7 

z) J dA dt- (WW, h)W, tr) a 
- WW, OP@, 0)) dr+a,<Z- Z,,, WE. (20) 

Applying the boundary conditions given by equa- 
tions (16cE(16e) and the final condition given by 
equation (16f), this result is written as 

+ J CWW W(r, 0) dr+a,(Z- Z,,, , AZ>,. (21) .c?# 
Once the sensiti~ty function B(r, t) is declined 

from the solution of the sensitivity problem and the 
adjoint function t+Q, t) obtained from the solution of 
the adjoint problem (16), the directional derivative 
D&&Z) is computed from equation (21). Utilizing its 
definition, given by equation (9), DazJ(Z) is expressed 
in the form of a scalar product as 

D*,J(Z) = (VJ(Z), AZ)E. w 

To illustrate the physical significance of the result 
given by equation (22), we examine the two examples 
considered previously, 

Case # 1. The function f,(r, t) unknown. The func- 
tion f,(r, t) is unknown over the boundary surface 
A, and we wish to determine it by the inverse analysis. 
As discussed previously, f,(r, t) is related to the am- 
bient temperature #(r, t) through the relation 

f,(r, t) = h(r) - #k 0. 
The sensitivity problem (13) is utilized to simplify 

equation (21), to obtain If I3&g(Z) = JJ AZ(r, t)$(r, t) dA dt 
0 Ai 

+~,~~-~,,,~-a. (231 

For this particular case, we have Z = f,(r, t) the 
function space E s L’(A , x10, tr[). Therefore, the 
definition of the scalar product for this particular case 
is given by equation (6~). Utilizing this definition (6c), 
equation (23) becomes 

DazJ(Z) = (~,AZ)E+ao(Z-Z,,,,AZ), 
= ($+ao(Z-Z,,,,AZ)E. (24) 

Then according to equation (22), the gradient of J 
is a function of (r, t) defined on A, x 10, tf[, given by 

VJ(r,t;Z) = tCt(r, t)+cl,(Z(r,t)-Z,,tr,t)). (25) 

A special case. The function 4(t) unknown. As a 
further special case, we consider equation (If); that is 

fi (r, 0 = h(rM(t) (10 

where h(r) is known and #(t) is to be determined. 
We have 2 s 4(t), AZ = A4(t) and the function 

space E = L’(O, tf). Therefore, the definition of the 
scalar product for this case is given by equation (6a). 
Utilizing the definition (6a), equation (23) becomes 

&J(Z) = “AZ(t) J (J ~(r)~(r, t) dA dt 
0 Al 1 

+wZ-Lt,A-Q, *t. =i J AZ(t)H(t) dt+a,(Z-Ze,,,AZ), 
0 

= <H,AZ),+ao<z--z,,,Az)~ 

= (H+a,(Z-Z,,), AZ&. (26) 

Thus according to the definition (22), the gradient 
of J is a function of t defined on 10, tf[, given by 

VJ(t;Z) = H(t)t-oc,(Z(t)-Z,,,(t)) (27a) 

where 

H(t) = J WW, 0 dA. W’b) Al 
In the foregoing analysis, to minimize the functional 

J(Z) in equation (4), we prefer to introduce a regu- 
larization term, i.e. t10 P 0, and use the stopping cri- 
teria of equation (4Og). If no regularization is used 
(Le. a0 = 0), then equation (16f) leads to H(t,) = 0 
and VJ&, Z) = 0. For such a case, a good estimate is 
needed for the final time condition Z(tf). A method 



described in ref. [15] can be used to alleviate the in- 
accuracy associated with the lack of knowledge about 

Z(t,). 
Case # 2. Thermal conductivity unknown. Thermal 

conductivity I(r) is to be determined on 2’. The sen- 
sitivity problem (15) is utilized to simplify equation 
(21). We obtain 

1, 
D,,J(Z) = 

ss 
V. (AZ(r)VT(r, t))$(r, t) dr dt 

0 :N 

- %f! $(r, t) dA dt 

+cco(Z-Z,,,,AZ),. (28a) 

Green’s formula is applied to the first integral term 
on the right-hand side of equation (28a) 

1, 

ss 
V * (AZ(r)VT(r, t))ll/(r, t) dr dt 

0 d 

a T(r, 0 
AZ(r) 7 +(r, t) dA dt 

5 
- ss AZ(r)VT(r, t)V$(r, t) dr dt. 

0 a 

Then equation (28a) takes the form 

D,,J(Z) = - 
IS 

AZ(r)VT(r, t)V$(r, t) dr dt 
0 Q 

‘f 

+ ss 0 A, 

AZ(r) g (r, t)$(r, t) dA dt 
1 

+ao(Z-Z,t, AZ), G’8b) 

In view of the boundary condition (16e), this result 
simplifies to 

D,,J(Z) = - 
s !i 

AZ(r) ” VT(r, t)V$(r, t) dt dr 
R 0 1 

+ SL”(Z-Z~~,, AZ),;. (28~) 

For this particular case, we have Z = L(r) and the 
function space E = L’(B). Therefore, the definition 
of the scalar product is given by equation (6b). 
Utilizing the definition (6b), equation (28~) becomes 

D&J(Z) = - s AZ(r)G(r) dr+a,(Z-Z,,,,AZ), 
.# 

= -(G,AZ),+a,(Z-Z,,,,AZ)~ 

= (-G+a,(Z-Z&AZ),. (2% 

Thus, according to the definition (22), the gradient of 
J is a function of r defined on W, given by 

VJ(r;Z) = -G(r)+cc,(Z(r)-Z,,,(r)) (29b) 

where 

s 1, 

G(r) = VT(r, t)V$(r, t) dt. (29c) 
0 

5. THE FINITE DIMENSIONAL CASE 

The solution of the finite dimensional problem for 
which the unknown function Z is expressed in the 

form of equation (7) can be readily obtained as a 
special case from the generalized solution methodology 
presented for the infinite dimensional problem. 

The only change in the solution methodology is the 
computation of the gradient defined by equations (21) 

and (22). 
When Z is given by equation (7) the variation AZ 

and the gradient VJ(Z) are given respectively by 

AZ(s) = 1 AZ,o,(s) (30) 
/_ ! 

VJ(s) = c VJ,o,(s). (31) 
,- I 

Now we need to determine the P components VJ, 
of the gradient vector VJ. The general procedure is 
similar to that described previously for the infinite 
dimensional case. Here we illustrate the basic 
approach by again considering cases # 1 and # 2 
already presented. 

Case # 1. The function f, (r, t) unknown. The func- 
tion f’,(r, t) is unknown over the boundary surface A , 
and it is to be determined by the inverse analysis. 
The physical significance of f,(r, t) in relation to the 
ambient temperature is as discussed previously. 

Equation (23) takes the form 

D,,J(Z) = i AZ,y?+a, i i AZ,S,,(Z,-Z,.,,,) 
/m I I=, ,- I 

(32) 

where 

)‘, = (*,fJ,>E = 
SI 

b’ n $(r, r)a,(r, 0 dA dt (33) 

&, = <o,,a,>,, i= I.. . ..P.j= l,.... P. (34) 

Equation (32) can be rearranged as 

D,,J(Z) = c AZ,VJ, (35) 
/= 1 

where 

VJ, = Y! + ~0 f X,(Z, - Z,,,.t,> i= l,....P. (36) 
j-1 

Thus, once $(r, t) is available from the adjoint prob- 
lem, tiL is determined from equation (33) and the P 
components of the gradient VJ, are determined from 
equation (36) since the basis functions ~~ are known. 

Case # 2. The thermal conductivity unknown. Equa- 
tion (28~) takes the form 
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Dd(z) = fj AZirt + cr, i 2 AZiSu(Zj-~,,e,,) 
i= 1 i-1 j=l 

(37) 

where 

y; = (-G,o~)~ = I - G(r)a,(r) dr (38) 
a 

G(r) is the same as equation (29~) and Sij is the same 
as equation (34). Hence, the P components VJ, of the 
gradient are determined from 

VJ, = $+a, 1 si,(zj-zj,e,,), i = 1,. , P. (39) 
/= I 

6. THE SOLUTION ALGORITHM 

The inverse problem has been formulated in Section 
2 as an infinite dimensional optimization problem of 
the functional J defined by equation (4). Now, we 
need to find Z such that it will minimize J(Z), i.e. 

Having the sensitivity and adjoint problems and the 
gradient function VJ(Z) available, we now describe 
the conjugate gradient method for minimizing the 
functional J(Z) in order to solve the inverse problem. 

6.1. Conjugate gradient method 
The basic steps in the application of the Polak- 

Ribiere version [16] of the conjugate gradient method 
applied to the solution of the above problems is 
described below. 

Step # 1. Choose an initial guess Z” E E; for example, 
Z” = Z,,,, or Z” = constant. Set n = 0. 

Step # 2. Define the scalar /?” : 

p=O, ifn=O (40a) 

B” = (VJP? VJV') -VJG'- ‘DE, 
llVJ(z”-‘)Ili 

if n > o. 

Wb) 

Step # 3. Define the direction p” E E: 

p” = VJ(Z’), ifn = 0 

p” = VJ(Z”)+/I”p”-‘, ifn > 0. 

(4Oc) 

(40d) 

Step # 4. Define the step size pne W 

p” = Arg min J(Z” - pp”). 

Step #5. Set 

z”” = z”-p”p2. 

Step #6. If 

(404 

@Of) 

IIz”+‘-z”II; <&,Stop. 

Otherwise, set n = n + 1, go to step # 2. 

(40g) 

6.2. Implementation of the conjugate gradient method 
for solving inverse problem 

Depending on the nature of the unknown function 
Z to be determined, the different steps of the above 
algorithm can be implemented in the following way : 

Steps #2 and #3: 

solve the direct problem (l), forward in time, to 
obtain the temperature T(d,, t ; Zn) ; 
compute the error terms e,(t ; T) from equation 
(16a) and the functional J(Zn) from equation (4) ; 
solve the adjoint problem (16b)-( 16f), backward 
in time, to obtain $(r, t ; Z”) ; 
compute the gradient VJ(z”) from the gradient 
equation (21) ; 
compute the scalar /? and the direction p” from 
equations (40a) to (4Oc). 

Remark. Depending on the nature of the problem, 
the general equation (21) needs to be simplified and 
expressed in terms of the adjoint function $ before 
computing the gradient VJ(z”). For example, for the 
problem of determining f,(r, t), equation (21) reduces 
to equation (25) and for the thermal conductivity 
problem, it reduces to equation (29). 

Step #4 : in the computation of the step size p”, two 
different cases need to be distinguished : 

(i) sensitivity function e(r, t) depends on tem- 
perature T(r, t) ; 

(ii) sensitivity function @(r, t) is independent of 

T(r, t) . 

This matter is illustrated below by examining the 
two cases considered previously. 

Case # 1. The function f,(r, t) unknown. The func- 
tion f,(r, t) is to be determined on the boundary sur- 
face A ,. Because of the linearity of the direct problem 
(l), the functional J(Z) is quadratic with respect to Z 
as shown below. 

The linearity of T(Z) in Z implies that 

T(r, t ; Z-PAZ) = T(r, t ; Z) - pD,,T(r, t ; AZ) 

= T(r, t ; Z) - pO(r, t) (41) 

where e(r, t) is the solution of the sensitivity problem 
(13), and p is a scalar. 

Let us set AZ(r, t) = p”(r, t) where p” is defined by 
equation (40d) and set Af, (r, t) = AZ(r, t) = p”(r, t) in 
the sensitivity problem (13). The resulting solution of 
problem (13) is denoted by O”(r, t). Then the functional 
J defined by equation (4), at the point (Z” - pp”) takes 
the form 

J(z”-pp”) =; I” F IT(d,, t;Z”-pp”) 
0 m=, 

- ~,At)l’ dt+~o/2ll~-~p”--Z,,,ll~ (424 
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J(Z’-pp”) =; 
I 

:’ “i, IT(L, t;zyppO”(d,,, t) 

- F,,,(t)l’ dt+~,,/2iiZ’-/>@’ -Z_, 11;’ (42b) 

r.Z”)- F,‘,,,(r,i’dt 

\ 
F,,,(t))fP(d,~,.r) dt+x,,(Z’-&,,,p”),- 

+PI (s 
i, 2, 

2 
,, ,>;, W”((d,,, t)l’ dt+r!ip”ll; 

1 
(42C) 

Utilizing the definition of the gradient VJ(Z) given 
by equation (Yb) and the directional derivative ex- 
pressed in the form given by equation (17), we obtain 

J(z”-p/7”) = J(Z”)-p(VJ(Z”),p”),.+ I’- K” 
3 

(43a) 

where K” is the constant given by 

K” = 
s 

” t IU”(d,,,,t)l’dt+rx,,/Ip”/!f. (43b) 
0 /7/_/ 

Then according to equation (43a), J(Z”-pp”) IS quad- 
ratic in p. This is a general result which is valid when 
the solution of the direct problem T(Z) is linear with 

respect to the function Z to be determined. 
Hence the best value p” which minimizes J(z” -- pp”) 

according to equation (40~) is obtained by minimizing 

equation (43a) with respect to p 

(44) 

The sensitivity function @"(r, t) needed in the com- 

putation of equation (44) is determined from the solu- 
tion of the sensitivity problem by setting AZ = p”. The 
solution algorithm is shown schematically in Table 1. 

Chse # 2. The thermal wnductizGt.v unknowns. The 
thermal conductivity A(r) is to be determined. In that 
case the solution T(Z) of the direct problem (1) is not 
linear with respect to the unknown function Z = i. 
Then J(Z) is not quadratic as in the previous case. So 
the determination of the scalar 11” may be achieved 
by dichotomy or Fibonacci methods [16] in order to 
satisfy equation (40e). 

Another approach consists of linearization of 
T(r, t; Z+pAZ). that is, by considering the approxi- 
mation 

T(r, t :Z-PAZ) ? T(r, I; Z)-pn,lLT(r. t;AZ) 

(45) 

2 T(r, t ; Z)-pU(r, 1). (46) 

For such a case, the solution methodology described 
nreviouslv becomes annlicable. 

Table I. Solution algorithm for the conjugate gradient 
method 

Computations Eyuatlon~ 

//” available 

the error terms c,,,(/; Z”) (Ilki) 
the functional J(P) (4) 
the adjoint function $(r. I : 7’) (16b) (IhI.) 
the gradient VJ(Z”) (25). (27). 129). 

(36) or (39) 
the scalar /i’ (40a). (40b) 

the dmxtion 1~” (4Oc). (40d) 

the sensitivity function O(r. /) (13), (15). etc. 
the scalar 0” (40e). (43b). (44) 

P (4Of) 

apply the stopping criteria c-log, 

7. CONCLUSIONS 

A general methodology has been proposed for for- 
mulating the solution of the inverse heat conduction 

problem (IHCP) as the solution of infinite dimen- 
sional optimization problem (IDOP). The approach 
assumes no a priori information on the nature of the 
unknown functions to be determined by the inverse 
analysis. Finite dimensional problems, which occur 
when a priori information is available, become merely 
a special case of the present approach. 

A general algorithm has been presented f’or solving 
IHCP by iteration. When the direct problem is linear 
with the unknown function to be determined, then the 
functional to be minimized is quadratic convex, the 
solution is unique and the convergence of the sequence 
defined by the conjugate gradient method is guaran- 
teed if some regularization is introduced, i.e. if the 
rcgularization parameter c(, is positive. In the cast 
the direct problem is nonlinear with the unknown 
function, the functional to be minimized may have 
local minima. The method allows the dctcrmination 
of such minima by varying the initial guess. 

Illustrative examples have been presented for the 
determination of unknown surface heat flux, ambient 
temperature and thermal conductivity. The method 
applies to the determination of other properties such 
as heat capacity, surface temperature. spatially 
varying heat transfer coefficient, initial temperature. 
generation term. The steady-state inverse heat con- 
duction problems arc also a special case of the present 
method. 
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UNE METHODE GENERALE D’OPTIMISATION POUR LA RESOLUTION DE 
PROBLEMES INVERSES MULTIDIMENSIONNELS DE CONDUCTION 

R&stun&Une fo~ulation est present&e pour resoudre des problemes inverses de conduction 3D comme 
unprobl~meg~n~ral~optimisation,par unalgo~~ede~adientconjugu~.~ette fo~ulation comporte 
les equations de sensibilite, les equations adjoin&s et ies equations du gradient. Un algorithme est d&it 
pour obtenir ies conditions surfaciques (flux de chaleur ou temperature), les variations spatiales de la 
conductivite et de la capaciti: thermique, a partir d’enregistrements de la temperature, effect&s au sein du 
solide. Dans cette approche du problemme, aucun choix a priori est nQessaire sur la fonction inconnue ii 
determiner. On montre que les problemes comportant un choix a priori de la fonction inconnue deviennent 

des cas particuliers de cette approchc g&&ale. 

EINE ALLGEMEINGtiLTIGE OPTIMIERUNGSMETHODE ZUR LdSUNG 
MEHRDIMENSIONALER PROBLEME DER INVERSEN WARMELEITUNG UNTER 

VERWENDUNG DES KONZEPTES DER ADJUNGIERTEN GLEICHUNG 

2~a~enf~~-Es wird ein Ansatz zur L&sung dreidimens~onaler Probieme der inversen Warme- 
leitung vorgestellt. Zur Behandlung des verallgeme~nerten Opti~erungsproblems wird das Konzept der 
adjun~e~en Gleichung in Verbind~g mit dem konjugierten Grad~entenverfahren benutzt. Die Formu- 
lierung besteht aus dem Empfindlichkeitsproblem, dem adjungierten Problem und den Gradientengleich- 
ungen. Es wird ein L&ungsalgorithmus zur Bestimmung der Oberflachenbedingungen (Warmestromdichte 
oder Temperatur), der Grtlichen W&rneleitfahigkeit und der Warmekapazitat vorgestellt. Der Algorithmus 
basiert auf den aufgezeichneten zeitlichen Temperaturverlaufen innerhalb des Festkiirpers. Bei diesem 
Ansatz wird keine Vorabinformation tiber die zu ermittelnde Funktion beniitigt. Liegen bereits Infor- 
mationen iiber die Funktion vorab fest, so stellt dies einen Sonderfall des allgemeinen Losungsweges dar. 

OEIQMH METOA OHTHMH3AHHM C RCIlOJIb30BAHHEM COHPS’IKEHHOI’0 
YPABHEHHfi fiJDI PEIIIEHHB 3A&4YH MHOI-OMEPHOR OBPATHOH 

TEH~OHPOBO~H~~ 

~~H~~~aa~eHa TpexMepHaa ~PMyn~~BKa o6paTuofi 3anaw TeMo~Bo~~H K~K 

o6me~~~a~uon~~~~3~uc~c~o~~oBa~we~MeTo~a~npK~earewffarxypaa~e~~ii~corI~arrtI~canfo- 

PEWMOM rp~~eHTa.~p~n~aKa awiowe~ saaaly y~o~~B~H,co~~e~~ 3wary B ypaerre- 

~~n~~e~a.~p~~0~~~~aTIrop~~~me~118nnaoue~KuycJroe~a~a noaepxiiocTu(T.e.Terino~oro 

IIOTOKa Ei3IH TeMIIepaTypbl), a TaKXCe 3aBHCluUHX OT KOOpJQiHaT KO3+l$HmieIiTa TellJlOIIpOBO~oCTH Ii 

Tennoconep-Atarms Ha owoae flamsarx no necramionapnofi rehmeparype, perricrpnpyehloii e~y~pw 

TBepJIOrO TeJIa.npH EiClIOJtb3yeMOM IIOnXOneOTCyTCTByeT Heo6XOg;HMOCTb B allp&iOpHOii HH~OPMaIIJiW 

06 WKOMOii +yHaWiH. nOKa3aH0, 'IT0 3ana%i, B WOTOpbIX 8CIIO3lb3yeTCX TaKaR nH+OpMauHK, npe~&?- 

TaBJInIoToco6MecJty9aEi. 


